ENVIRONMENTAL EXPERTISE FROM THE GROUND UP

Remedy Performance Reporting Driving Remediation System Optimization and Site Progression

Kevin Michael Lienau, PE Corporate Engineering Manager

Agenda

A Programmatic Approach to OM&M

Field Data and Optimization

Key Performance Indicators (KPIs)

A Programmatic Approach

Establishing a Framework

Types of OM&M Projects

- Groundwater Extraction
- Vapor Extraction
- Air Sparging, Biosparging
- Multi-phase Extraction
- NAPL Recovery
- Vapor Mitigation
- ISCO and Ozone Sparging
- Storm/Surface Water Treatment
- Leachate Recovery and Treatment
- Landfill Gas Management

Active (Mechanical)

- Soil Cap
- Barrier Wall (sheet piling/slurry wall)
- Permeable Reactive Barriers
- Landfill Cap
- Phytoremediation

Passive

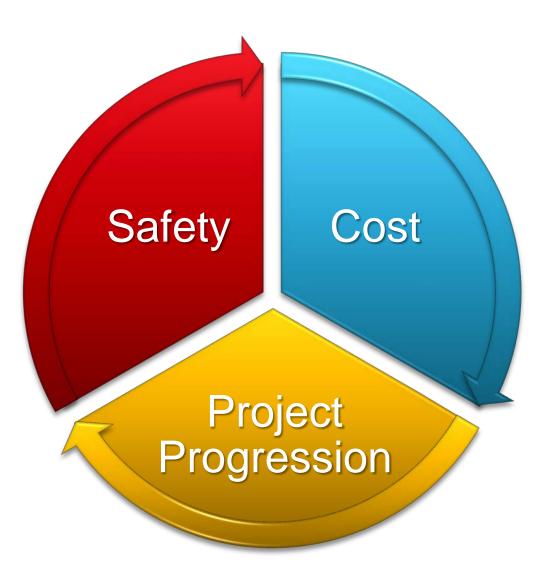
NAPL Sorbent Socks

(Non-Mechanical)

• MNA

• ISCO

- ISCR
- Bioremediation
- MNA Enhancement
- Surfactant
- In-situ Activated Carbon
- Dewatering
- Vacuum Truck Program


Other (Short-Term/ Temporary)

OM&M Program Benchmarking

Program Element	Major Oil	Major Oil	Major Oil	Divers. Mfg	Major Oil	Aero. Mfg	Chem. Mfg	Pipeline Co.	Power Utility
Defined OM&M Practices									
Defined Work Scopes / Units									
Defined MOC Processes									
Performance Scorecards									
MMS									
Defined Technical Reporting Requirements									
Defined Financial Reporting Requirements									
Formal Site Review / Audit Process									

OM&M Priority Benchmarking

Remediation introduces immediate risks that were not present prior to implementation.

Why is Management of Change Important?

Changes occur during OM&M

- Often less rigorously evaluated and reviewed
- May be "field determinations"
- Introduces new or different risks
 - » Injury to site workers
 - » Permit non-compliance
 - » Loss of treatment efficiency
 - » Exceed design flow rates
 - » Damage to equipment

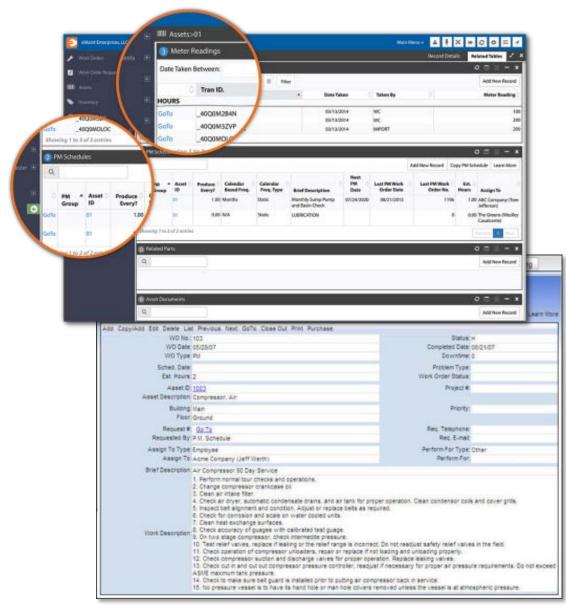
Audits and Peer Reviews

Safety & Compliance Audits

- Internal and/or third party
- Avoid injury and related costs
- Avoid downtime
- Avoid regulatory and public scrutiny:
 - » Consent orders, permit non-compliance
 - » Re-work

Peer Reviews

- Get new perspectives on languishing issues
- Break status quo for continuous improvement


Engage stakeholders in the process. Assign action items and accountability for further vetting and/or implementation.

Field Data and Optimization

Working Together

Workflow Process

Select System Data

Flow rate	NAPL thickness	Operator hours	Process data (pressure,	
Mass flow rate	Mass recovered	Utility costs	flow)	
NAPL recovery rate	COC concentrations	Uptime	Chemical usage rate	
Pore volumes recovered	PID and LEL	Sustainability factors	Equipment hour meter	
Groundwater geochemistry	Groundwater elevation	Waste generation	Permit compliance data	

Every piece of data collected should be used. Timely review data and trends. If data is not being used:

- 1. Should it be used?
- 2. Is it valuable for later use?
- 3. Should it be collected?

Remedial Process Optimization (RPO)

	Protective of human health and environment					
Remedy Optimization	Hudroulia control and pluma contura	Subsurface barrier				
	Hydraulic control and plume capture	Groundwater extraction system				
	Contaminant concentrations in soil and groundwater	Stabilization, reduction				
	Vapor intrusion mitigation					
	Soil cap condition					
	Permit and regulatory compliance					
	Flow rates and pressure					
-	Process stream chemistry	Contaminants, pH				
	Equipment cycling rates, condition, life cycle					
	Equipment cycling rates, condition, life cycle Treatment train effectiveness and necessity					
Drocoss						
Process	Treatment train effectiveness and necessity					
Process Optimization	Treatment train effectiveness and necessity Chemical/consumable usage Waste generation volume and frequency	Field				
	Treatment train effectiveness and necessity Chemical/consumable usage	Field Laboratory				
	Treatment train effectiveness and necessity Chemical/consumable usage Waste generation volume and frequency					

Industry Optimization Approaches

- Traditionally viewed as separate from OM&M
 - » Defined process
 - » Holistic review of remedy success/progress
 - » Cost review
 - » Treatment train evaluation
 - » Safety review
- Increasingly considered part of OM&M
 - » Some have defined process
 - » Expectations often less clearly defined
 - > "Reduce cost"
 - > "Site progression"
 - » May be expected as "value-added" service

Ensure remedy performance is routinely monitored and continuously improved. Optimization almost always leads to the need to implement a management of change process.

Key Performance Indicators Selecting the Right Metrics

Performance Metrics: KPIs

Defining objectives and measuring performance

Program KPIs

- Health and safety
- Regulatory compliance
- Schedule compliance
- Financial & cost savings
- Project progression
- Peer reviews
- System performance
- Optimization

Site-specific KPIs

- Operating as designed
- Mass removed / treated
- Uptime
- Carbon footprint
- Inspections

Select remedy performance KPIs that provide a quantitative measure of remedy performance toward remedial goals.

KPI Selection

- If met, site will reach remedial goals in the predicted time
- Evaluate the rate at which the site is remediated
- Benchmarked against established standards
- Specific to a site, system, and a remedy
- Defined prompt action plan for deficiencies

Uptime

- Good first look
- Identify problematic systems or trends
- Always tracked but minimal diagnostic value

Mass Recovery

- Track as total mass, rate, or \$/lb
- Value dependent on initial mass estimate
- Tracking by well or area useful

Supplemental KPIs

- Specific to a given technology and site
- Targeted to evaluate rate at which system is achieving remedial goal or evaluate key operational parameters
- Monitor changes in regulations and site use

SVE Examples

- Pore volume exchange rate at maximum ROI
- O₂ and CO₂ concentrations
- Vadose zone temperature changes
- Respiration test data

LNAPL Recovery Examples

- Actual vs. predicted recovery rates
- Recovery per unit area
- Changes in transmissivity at recovery and monitoring wells
- Apparent thickness (often regulatory closure criteria)

Key Takeaways

- Build "fit for purpose" OM&M program
- Safety, cost, change management, and KPIs
- Use independent "fresh eyes" reviews to share best practices, highlight innovation, and continuous learning opportunities
- Select useful OM&M data to collect
- Optimization is change
- Standardize performance tracking, but allow flexibility in site-level implementation

THANK YOU.

Kevin Michael Lienau, PE

Corporate Engineering Manager

Groundwater & Environmental Services, Inc. 1301 Corporate Center Drive, Suite 190 Eagan, MN 55121

T. 800.725.1077 ext. 3175

E. klienau@GESonline.com

Groundwater & Environmental Services, Inc.